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Scaling Biomarkers to Reproductive Endpoint
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Gonadotropin - Driving variable
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Model - Series of Ordinary
Differential Equations
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PCB Simulation

e Croaker exposed to PCBs have GtH levels that
are 38% of control fish

« Multiply GtH driving variable by 0.38




ATLANTIC CROAKER

PCB Mixture Simulation e res s
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Cadmium Simulation

Cadmium increases GtH secretion by 295%

 Multiply GtH driving variable by 2.95

Cadmium doubles the rate of testosterone production

e Multiply testosterone synthesis function by 2.0
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Field Evaluation

Determine If biomarkers measured in field
Indicate exposure to hypoxia

o Simulate cumulative vitellogenin production with
decreasing estradiol

 Compare to laboratory studies

 Compare to fish undergoing gonadal development
that were collected from sites with varying degrees
of hypoxia




Field Evaluation
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Fish Behavior

e Behavior often used as a toxicological endpoint

e Effects of contaminants on fish behavior well
documented

 Difficult to quantitatively extrapolate
contaminant effects on fish behavior to the
population level




Overview of Approach

Video-taped croaker larvae
responding to fake predator
attacks (survival skills)

Control, low dose PCBs, low
and high dose MeHg conditions

Experiment with red drum
where measure survival skills
and also success with a real
fish predator

Statistical model: relate survival
skills of croaker to probability of
escaping a real predator




MeHg Laboratory Results
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PCB Laboratory Results
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2. Statistical Models

 Regression Tree

— Relate survival skills to probability of escaping a real predator by
recursively partitioning data into a hierarchial succession of nodes

e Logistic Regression
— Relate swimming speed to the probability of escaping a predator
using logits




Regression Tree
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Logistic Regression
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Results: Statistical Models

Create multipliers for each developmental stage and each treatment

(control, low or high) for swimming speed and the probability of escaping a
predator e.g.:
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3. Individual Based Model
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IBM: Baseline Results
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IBM: Summary
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4. Matrix Projection Model

Use a matrix projection model to predict
population-level responses to endocrine
disrupting chemicals from laboratory studies




Matrix Projection Model

Classic formulation:
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Overview of Approach

 Two Atlantic croaker populations with two

nursery areas
« Mid-Atlantic Bight — North Carolina and Virginia
» Gulf of Mexico — Louisiana and Texas

e Two contaminants
e PCBs
 MeHg

« Different exposure scenarios
« Contaminants eliminated after first spawning event
« Contaminant effects last lifetime of fish
* Percentage of individuals from a nursery area affected
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Mid-Atlantic Bight (MAB)
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Baseline Simulations
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Baseline Simulations

Density dependence: spawner-recruit relationships
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Contaminant effects

e PCBs
 Fecundity is reduced by 65% (Lab)
 Egg survival is reduced by 81% (Lab)
e Ocean larva survival reduced by 47% (IBM)
e Ocean larva stage duration reduced by 19% (IBM)

 MeHg
e Fecundity is reduced by 33% (Lab)
* Egg survival is reduced by 45% (Lab)
e Ocean larva survival reduced by 86% (IBM)
e Ocean larva stage duration reduced by 4% (IBM)




Simulation results
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Conclusions

 Methods:
— regression tree and IBM — relatively new
— expansion of classic matrix model — time steps and regions
— uncertainty and stochasticity embraced

* Physiological model:
— relate biomarker to ecological endpoint of yolk (fecundity)
— evaluate biomarkers and multiple stressors in a dynamic system

e Statistical to IBM to Matrix models:
— laboratory and sublethal effects can be scaled to population level
— “hundredths of seconds to hundreds of years”




